Integration of the Dual Approaches in the Distributional Learning of Context-Free Grammars

نویسنده

  • Ryo Yoshinaka
چکیده

• Models and exploits the distribution of strings in contexts • (x,z)  y = xyz ∈ L ? (ε,ε) (a,ε) (ε,b) (a,b) (ab,ε) (ε,abb) (aab,ε) ε a b ab aab abb aabb ε a b ab ab abb aab a aa ab aab aba aabb aaba b ab bb abb abb babb aabb ab aab abb aabb abab ababb aabab aab aaab aabb aaabb abaab aababb aabaab abb aabb abbb aabbb ababb abbabb aababb aabb aaabb aabbb aaabbb abaabb aabbabb aabaabb • ex. for L = { a n b n | n≧0 }, L⊘ab = { (a n ,b n) | n≧0 }. • ex. for L = { a n b n | n≧0 }, L⊘ab = { (a n ,b n) | n≧0 }. • ex. for L = { a n b n | n≧0 }, L⊘ab = { (a n ,b n) | n≧0 }. • (L⊘v)v ⊆ L and w(L⊘w) ⊆ L. • ex. for L = { a n b n | n≧0 }, L⊘ab = { (a n ,b n) | n≧0 }. • (L⊘v)v ⊆ L and w(L⊘w) ⊆ L. • ex. for L = { a n b n | n≧0 }, L⊘ab = { (a n ,b n) | n≧0 }. • (L⊘v)v ⊆ L and w(L⊘w) ⊆ L .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond Semilinearity: Distributional Learning of Parallel Multiple Context-free Grammars

Semilinearity is widely held to be a linguistic invariant but, controversially, some linguistic phenomena in languages like Old Georgian and Yoruba seem to violate this constraint. In this paper we extend distributional learning to the class of parallel multiple context-free grammars, a class which as far as is known includes all attested natural languages, even taking an extreme view on these ...

متن کامل

An Attempt Towards Learning Semantics: Distributional Learning of IO Context-Free Tree Grammars

Solid techniques based on distributional learning have been developed targeting rich subclasses of CFGs and their extensions including linear context-free tree grammars. Along this line we propose a learning algorithm for some subclasses of IO contextfree tree grammars.

متن کامل

General Perspective on Distributionally Learnable Classes

Several algorithms have been proposed to learn different subclasses of context-free grammars based on the idea generically called distributional learning. Those techniques have been applied to many formalisms richer than context-free grammars like multiple context-free grammars, simple contextfree tree grammars and others. The learning algorithms for those different formalisms are actually quit...

متن کامل

Testing Distributional Properties of Context-Free Grammars

Recent algorithms for distributional learning of context-free grammars can learn all languages defined by grammars that have certain distributional properties: the finite kernel property (fkp) and the finite context property (fcp). In this paper we present some algorithms for approximately determining whether a given grammar has one of these properties. We then present the results of some exper...

متن کامل

Inferring (k, l)-context-sensitive probabilistic context-free grammars using hierarchical Pitman-Yor processes

Motivated by the idea of applying nonparametric Bayesian models to dual approaches for distributional learning, we define (k, l)-context-sensitive probabilistic context-free grammars (PCFGs) using hierarchical Pitman-Yor processes (PYPs). The data sparseness problem that occurs when inferring context-sensitive probabilities for rules is handled by the smoothing effect of hierarchical PYPs. Many...

متن کامل

Grammatical Inference of some Probabilistic Context-Free Grammars from Positive Data using Minimum Satisfiability

Recently, different theoretical learning results have been found for a variety of context-free grammar subclasses through the use of distributional learning (Clark, 2010b). However, these results are still not extended to probabilistic grammars. In this work, we give a practical algorithm, with some proven properties, that learns a subclass of probabilistic grammars from positive data. A minimu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012